The generator matrix

 1  0  0  0  1  1  1  1 X^2+X  1  1 X^2  0  1  0  0  X  X  1 X^2 X^2+X  1  1  1  1  0  1 X^2+X  1  1 X^2  X X^2 X^2  1  1 X^2 X^2+X  1  1  1  1  1  0  1  1  1  1  1  1  0  1  X  1  1  X  1  1  1  1 X^2+X  1  1  1  1  1  0
 0  1  0  0  0 X^2  1 X^2+1  1 X^2 X^2+X+1  1 X^2+X X^2+1  1  1  X  1  1 X^2  1 X^2 X^2+1 X+1 X^2+X  X  X X^2 X^2 X+1  1  1  1 X^2  0  X  1  1 X^2+X+1 X^2  X  1 X^2 X^2 X+1  0 X+1 X^2+1  1 X^2  1 X+1  1  X X^2+X  1 X+1 X^2+X+1  X X^2+1  1 X^2+X X^2+1 X^2  X X^2  X
 0  0  1  0  0 X^2+1 X^2  1  1 X+1 X^2+X+1  1  1 X^2  0 X^2  1 X+1  1  X  0 X^2+X+1 X^2+X X^2+X  X  1 X+1  X  X  1  0 X+1 X^2+X+1  1 X^2+1 X^2+X X^2 X^2+X+1 X^2+1 X^2+X+1 X^2 X^2+X+1  0  1 X^2+X X^2  0  X  1 X^2+1  0 X+1  0 X^2+X+1 X^2  1  X X^2 X^2+X+1 X^2+1 X+1  X  1 X^2+X  1  1  1
 0  0  0  1  1  1 X^2+1  X  1  0 X+1 X^2+X X^2+1  X X+1  X  0  1  1  1 X^2+X+1 X+1 X^2+1  X X^2+1  1  X  1  0 X^2 X^2+X  1  X  X  X X+1 X^2+1  0 X^2+1 X^2+1  1 X^2 X^2 X+1  0  0  0 X^2+X+1 X^2+X+1 X^2  0 X^2+1 X^2+X  1  X X+1 X^2 X^2+1 X^2+1 X^2 X+1 X^2 X+1 X^2+1  1  X X^2
 0  0  0  0  X  0  0  0  0  X  X  X  X  X  X X^2 X^2  0 X^2+X X^2 X^2 X^2+X  X X^2 X^2 X^2  X  X X^2  X X^2+X X^2+X X^2 X^2+X X^2  X  X  0  0 X^2 X^2  0 X^2  X  X X^2+X X^2  0  X  X X^2+X  0 X^2+X  X X^2  X X^2 X^2+X  0 X^2+X  0 X^2+X X^2+X X^2+X  0  X  0

generates a code of length 67 over Z2[X]/(X^3) who�s minimum homogenous weight is 59.

Homogenous weight enumerator: w(x)=1x^0+272x^59+489x^60+736x^61+899x^62+1130x^63+1315x^64+1276x^65+1524x^66+1464x^67+1468x^68+1252x^69+1144x^70+1090x^71+771x^72+618x^73+363x^74+262x^75+141x^76+64x^77+63x^78+20x^79+7x^80+6x^81+7x^82+2x^83

The gray image is a linear code over GF(2) with n=268, k=14 and d=118.
This code was found by Heurico 1.13 in 8 seconds.